een wereldwijd elektriciteitsnet een oplossing voor veel problemen  GENI es una institución de investigación y educación-enfocada en la interconexión de rejillas de electricidad entre naciones.  ??????. ????????????????????????????????????  nous proposons la construction d’un réseau électrique reliant pays et continents basé sur les ressources renouvelables  Unser Planet ist mit einem enormen Potential an erneuerbaren Energiequellen - Da es heutzutage m` glich ist, Strom wirtschaftlich , können diese regenerativen Energiequellen einige der konventionellen betriebenen Kraftwerke ersetzen.  한국어/Korean  utilizando transmissores de alta potência em áreas remotas, e mudar a força via linha de transmissões de alta-voltagem, podemos alcançar 7000 quilómetros, conectando nações e continentes    
What's Geni? Endorsements Global Issues Library Policy Projects Support GENI
Add news to your site >>

About Us

GE, Sandia National Lab discover path to quieter, more productive wind turbines


October, 2013 -

GE Global Research, the technology development arm of General Electric, has announced research that could significantly impact the design of future wind turbine blades.

Utilizing the power of high-performance computing (HPC) to perform complex calculations, GE engineers have overcome previous design constraints, allowing them to begin exploring ways to design re-engineered wind blades that are low-noise and more prolific power-producers.

Partnering with the Sandia National Laboratories (Sandia) in Albuquerque, New Mexico, GE's work focused on advancing wind turbine blade noise prediction methods. Aerodynamic blade noise is the dominant noise source on modern, utility-scale wind turbines and represents a key constraint in wind turbine design. Efforts to reduce blade noise can help reduce the cost of wind energy and increase power output. In fact, GE predicts a 1 decibel quieter rotor design would result in a two-percent increase in annual energy yield per turbine. With approximately 240GW of new wind installations forecasted globally over the next five years, a two-percent increase would create 5GW of additional wind power capacity. That's enough to power every household in New York City, Boston, and Los Angeles, combined.

"There's no question, aerodynamic noise is a key constraint in wind turbine blade design today", said Mark Jonkhof, Wind Technology Platform Leader at GE Global Research. "By using high-performance computing to advance current engineering models that are used to predict blade noise, we can build quieter rotors with greater blade tip velocity that produce more power. This not only means lower energy costs for consumers, but also a significant reduction in greenhouse gas emissions."

Jonkhof added: "Having access to Sandia's supercomputer was invaluable in our ability to conduct these experiments and make discoveries that will bolster wind power's potential. Access and availability to HPC resources offers a critical advantage to companies trying to compete in a global environment."

Updated: 2016/06/30

If you speak another language fluently and you liked this page, make a contribution by translating it! For additional translations check out (Voor vertaling van Engels tot Nederlands) (For oversettelse fra Engelsk til Norsk)
(Для дополнительных переводов проверяют )